o
    Je                     @   sX  d Z ddlZddlmZ ddlmZ ddlmZ ddlm	Z
 dd	lmZ dd
lmZ ddlmZ g dZe
jZdddddddddddddddZejZdd ZedG dd dZG dd dejZG dd deZdd Zed		d-d d!Zed		d-d"d#Zed		d.d$d%Zd&d' Zed		d.d(d)Z ed		*d/d+d,Z!dS )0a  
Record Arrays
=============
Record arrays expose the fields of structured arrays as properties.

Most commonly, ndarrays contain elements of a single type, e.g. floats,
integers, bools etc.  However, it is possible for elements to be combinations
of these using structured types, such as::

  >>> a = np.array([(1, 2.0), (1, 2.0)], dtype=[('x', np.int64), ('y', np.float64)])
  >>> a
  array([(1, 2.), (1, 2.)], dtype=[('x', '<i8'), ('y', '<f8')])

Here, each element consists of two fields: x (and int), and y (a float).
This is known as a structured array.  The different fields are analogous
to columns in a spread-sheet.  The different fields can be accessed as
one would a dictionary::

  >>> a['x']
  array([1, 1])

  >>> a['y']
  array([2., 2.])

Record arrays allow us to access fields as properties::

  >>> ar = np.rec.array(a)

  >>> ar.x
  array([1, 1])

  >>> ar.y
  array([2., 2.])

    N)Counter)nullcontext   )
set_module   )numeric)numerictypes)	os_fspath)_get_legacy_print_mode)recordrecarrayformat_parser
fromarraysfromrecords
fromstringfromfilearray><=s|)blnBLNSr   r   r   r   r   Iic                 C   s   dd t |  D S )z@Find duplication in a list, return a list of duplicated elementsc                 S   s   g | ]
\}}|d kr|qS r    ).0itemcountsr"   r"   `/home/seandotau/au.memorygallery.club/gallery/lib/python3.10/site-packages/numpy/core/records.py
<listcomp>P   s
    z"find_duplicate.<locals>.<listcomp>)r   items)listr"   r"   r&   find_duplicateN   s   
r*   numpyc                   @   s4   e Zd ZdZdddZdddZdd	 Zd
d ZdS )r   a  
    Class to convert formats, names, titles description to a dtype.

    After constructing the format_parser object, the dtype attribute is
    the converted data-type:
    ``dtype = format_parser(formats, names, titles).dtype``

    Attributes
    ----------
    dtype : dtype
        The converted data-type.

    Parameters
    ----------
    formats : str or list of str
        The format description, either specified as a string with
        comma-separated format descriptions in the form ``'f8, i4, a5'``, or
        a list of format description strings  in the form
        ``['f8', 'i4', 'a5']``.
    names : str or list/tuple of str
        The field names, either specified as a comma-separated string in the
        form ``'col1, col2, col3'``, or as a list or tuple of strings in the
        form ``['col1', 'col2', 'col3']``.
        An empty list can be used, in that case default field names
        ('f0', 'f1', ...) are used.
    titles : sequence
        Sequence of title strings. An empty list can be used to leave titles
        out.
    aligned : bool, optional
        If True, align the fields by padding as the C-compiler would.
        Default is False.
    byteorder : str, optional
        If specified, all the fields will be changed to the
        provided byte-order.  Otherwise, the default byte-order is
        used. For all available string specifiers, see `dtype.newbyteorder`.

    See Also
    --------
    dtype, typename, sctype2char

    Examples
    --------
    >>> np.format_parser(['<f8', '<i4', '<a5'], ['col1', 'col2', 'col3'],
    ...                  ['T1', 'T2', 'T3']).dtype
    dtype([(('T1', 'col1'), '<f8'), (('T2', 'col2'), '<i4'), (('T3', 'col3'), 'S5')])

    `names` and/or `titles` can be empty lists. If `titles` is an empty list,
    titles will simply not appear. If `names` is empty, default field names
    will be used.

    >>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
    ...                  []).dtype
    dtype([('col1', '<f8'), ('col2', '<i4'), ('col3', '<S5')])
    >>> np.format_parser(['<f8', '<i4', '<a5'], [], []).dtype
    dtype([('f0', '<f8'), ('f1', '<i4'), ('f2', 'S5')])

    FNc                 C   s&   |  || | || | | d S N)_parseFormats_setfieldnames_createdtype)selfformatsnamestitlesaligned	byteorderr"   r"   r&   __init__   s   zformat_parser.__init__c                    s   |du rt dt|trtdd t|D |}nt||}|j  du r4td|fg|}|j |j} fdd|D | _ fdd|D | _	t
|| _dS )z Parse the field formats NzNeed formats argumentc                 S   s   g | ]\}}d  ||fqS )zf{})format)r#   r    Zformat_r"   r"   r&   r'          z/format_parser._parseFormats.<locals>.<listcomp>f1c                       g | ]} | d  qS r   r"   r#   keyfieldsr"   r&   r'          c                    r:   r!   r"   r<   r>   r"   r&   r'      r@   )
ValueError
isinstancer)   sbdtype	enumerater?   r2   
_f_formats_offsetslen_nfields)r0   r1   r4   rD   keysr"   r>   r&   r-      s    
zformat_parser._parseFormatsc                 C   s   |r,t |ttfv rnt|tr|d}ntdt| dd |d| j D | _	ng | _	|  j	dd t
t| j	| jD 7  _	t| j	}|rOtd| |r_dd |d| j D | _ng | _g }| jt|kr||  jdg| jt|  7  _dS dS )	zQconvert input field names into a list and assign to the _names
        attribute ,zillegal input names %sc                 S      g | ]}|  qS r"   stripr#   r   r"   r"   r&   r'          z0format_parser._setfieldnames.<locals>.<listcomp>Nc                 S   s   g | ]}d | qS )zf%dr"   r#   r    r"   r"   r&   r'      rP   zDuplicate field names: %sc                 S   rL   r"   rM   rO   r"   r"   r&   r'      rP   )typer)   tuplerB   strsplit	NameErrorreprrI   _namesrangerH   r*   rA   _titles)r0   r2   r3   Z_dupr"   r"   r&   r.      s*   

"zformat_parser._setfieldnamesc                 C   sD   t | j| j| j| jd}|d urt|d  }||}|| _d S )N)r2   r1   offsetsr3   r   )rC   rD   rX   rF   rG   rZ   _byteorderconvZnewbyteorder)r0   r5   rD   r"   r"   r&   r/      s   

zformat_parser._createdtype)FN)F)__name__
__module____qualname____doc__r6   r-   r.   r/   r"   r"   r"   r&   r   W   s    
:
$r   c                       sT   e Zd ZdZd Z dZ fddZ fddZdd Zd	d
 Zdd Zdd Z	  Z
S )r   zEA data-type scalar that allows field access as attribute lookup.
    r+   c                    s   t  dkr	|  S t  S Nq   )r
   __str__super__repr__r0   	__class__r"   r&   re      s   

zrecord.__repr__c                    s    t  dkrt|  S t  S ra   )r
   rT   r$   rd   rc   rf   rg   r"   r&   rc      s   

zrecord.__str__c                 C   s   |dv rt j| |S zt j| |W S  ty   Y nw t j| dj}||d }|rW| j|d d  }z|j}W n tyF   | Y S w |jd urU|	| j
|jfS |S td| )NsetfieldgetfieldrD   rD   r   %'record' object has no attribute '%s')ntvoid__getattribute__AttributeErrorr?   getrk   rD   r2   viewrh   )r0   attr	fielddictresobjdtr"   r"   r&   ro      s,   

zrecord.__getattribute__c                 C   sv   |dv r
t d| tj| dj}||d }|r'| j|g|d d R  S t| |d r5tj| ||S t d| )Nri   zCannot set '%s' attributerD   r   rl   )	rp   rm   rn   ro   r?   rq   rj   getattr__setattr__)r0   rs   valrt   ru   r"   r"   r&   ry     s   zrecord.__setattr__c                 C   s<   t j| |}t|t jr|jjd ur|| j|jfS |S r,   )rm   rn   __getitem__rB   rD   r2   rr   rh   r0   Zindxrv   r"   r"   r&   r{     s   zrecord.__getitem__c                    s@   j j}tdd |D }d|   fdd|D }d|S )zPretty-print all fields.c                 s   s    | ]}t |V  qd S r,   )rH   r#   namer"   r"   r&   	<genexpr>'  s    z record.pprint.<locals>.<genexpr>z%% %ds: %%sc                    s   g | ]} |t |f qS r"   )rx   r}   fmtr0   r"   r&   r'   )  r8   z!record.pprint.<locals>.<listcomp>
)rD   r2   maxjoin)r0   r2   maxlenrowsr"   r   r&   pprint#  s
   
zrecord.pprint)r]   r^   r_   r`   re   rc   ro   ry   r{   r   __classcell__r"   r"   rg   r&   r      s    
r   c                       sb   e Zd ZdZd Z dZ			dddZd	d
 Zdd Zdd Z fddZdd Z	dddZ
  ZS )r   a-  Construct an ndarray that allows field access using attributes.

    Arrays may have a data-types containing fields, analogous
    to columns in a spread sheet.  An example is ``[(x, int), (y, float)]``,
    where each entry in the array is a pair of ``(int, float)``.  Normally,
    these attributes are accessed using dictionary lookups such as ``arr['x']``
    and ``arr['y']``.  Record arrays allow the fields to be accessed as members
    of the array, using ``arr.x`` and ``arr.y``.

    Parameters
    ----------
    shape : tuple
        Shape of output array.
    dtype : data-type, optional
        The desired data-type.  By default, the data-type is determined
        from `formats`, `names`, `titles`, `aligned` and `byteorder`.
    formats : list of data-types, optional
        A list containing the data-types for the different columns, e.g.
        ``['i4', 'f8', 'i4']``.  `formats` does *not* support the new
        convention of using types directly, i.e. ``(int, float, int)``.
        Note that `formats` must be a list, not a tuple.
        Given that `formats` is somewhat limited, we recommend specifying
        `dtype` instead.
    names : tuple of str, optional
        The name of each column, e.g. ``('x', 'y', 'z')``.
    buf : buffer, optional
        By default, a new array is created of the given shape and data-type.
        If `buf` is specified and is an object exposing the buffer interface,
        the array will use the memory from the existing buffer.  In this case,
        the `offset` and `strides` keywords are available.

    Other Parameters
    ----------------
    titles : tuple of str, optional
        Aliases for column names.  For example, if `names` were
        ``('x', 'y', 'z')`` and `titles` is
        ``('x_coordinate', 'y_coordinate', 'z_coordinate')``, then
        ``arr['x']`` is equivalent to both ``arr.x`` and ``arr.x_coordinate``.
    byteorder : {'<', '>', '='}, optional
        Byte-order for all fields.
    aligned : bool, optional
        Align the fields in memory as the C-compiler would.
    strides : tuple of ints, optional
        Buffer (`buf`) is interpreted according to these strides (strides
        define how many bytes each array element, row, column, etc.
        occupy in memory).
    offset : int, optional
        Start reading buffer (`buf`) from this offset onwards.
    order : {'C', 'F'}, optional
        Row-major (C-style) or column-major (Fortran-style) order.

    Returns
    -------
    rec : recarray
        Empty array of the given shape and type.

    See Also
    --------
    core.records.fromrecords : Construct a record array from data.
    record : fundamental data-type for `recarray`.
    format_parser : determine a data-type from formats, names, titles.

    Notes
    -----
    This constructor can be compared to ``empty``: it creates a new record
    array but does not fill it with data.  To create a record array from data,
    use one of the following methods:

    1. Create a standard ndarray and convert it to a record array,
       using ``arr.view(np.recarray)``
    2. Use the `buf` keyword.
    3. Use `np.rec.fromrecords`.

    Examples
    --------
    Create an array with two fields, ``x`` and ``y``:

    >>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', '<f8'), ('y', '<i8')])
    >>> x
    array([(1., 2), (3., 4)], dtype=[('x', '<f8'), ('y', '<i8')])

    >>> x['x']
    array([1., 3.])

    View the array as a record array:

    >>> x = x.view(np.recarray)

    >>> x.x
    array([1., 3.])

    >>> x.y
    array([2, 4])

    Create a new, empty record array:

    >>> np.recarray((2,),
    ... dtype=[('x', int), ('y', float), ('z', int)]) #doctest: +SKIP
    rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),
           (3471280, 1.2134086255804012e-316, 0)],
          dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])

    r+   Nr   FCc              	   C   sh   |d ur
t |}n	t||||
|	j}|d u r$tj| |t|f|d}|S tj| |t|f||||d}|S )N)order)bufferoffsetstridesr   )rC   rD   r   ndarray__new__r   )subtypeshaperD   bufr   r   r1   r2   r3   r5   r4   r   descrr0   r"   r"   r&   r     s   zrecarray.__new__c                 C   s,   | j jtur| j jd ur| j | _ d S d S d S r,   )rD   rR   r   r2   )r0   rv   r"   r"   r&   __array_finalize__  s   zrecarray.__array_finalize__c              
   C   s   zt | |W S  ty   Y nw t| dj}z
|| d d }W n ttfy7 } ztd| |d }~ww | j| }|jj	d urXt
|jjtjrV|j| jj|jfdS |S |tS )NrD   r   zrecarray has no attribute %srD   )objectro   rp   r   r?   	TypeErrorKeyErrorrk   rD   r2   
issubclassrR   rm   rn   rr   )r0   rs   rt   ru   erv   r"   r"   r&   ro     s$   

zrecarray.__getattribute__c              
   C   s  |dkrt |jtjr|jd urtt|f}|| jv}z	t	
| ||}W n ty<   t| djp4i }||vr: Y n&w t| djpEi }||vrL|S |rbzt	| | W n tya   | Y S w z
|| d d }W n ttfy } ztd| |d }~ww | j|g|R  S )NrD   r   z record array has no attribute %s)r   rR   rm   rn   r2   rC   rD   r   __dict__r   ry   	Exceptionr   ro   r?   __delattr__r   r   rp   rj   )r0   rs   rz   Znewattrretrt   ru   r   r"   r"   r&   ry     s>    
zrecarray.__setattr__c                    sj   t  |}t|tr3|jjd ur-|t| }t|jjt	j
r+|j| jj|jfdS |S |jtdS |S )Nr   )rR   )rd   r{   rB   r   rD   r2   rr   rR   r   rm   rn   r|   rg   r"   r&   r{     s   
zrecarray.__getitem__c                 C   s   | j }| j jtu st| j jtjs#|jtu rt tj|f}d}d}nd}d}| jdks1| jdkr;tj	| d|dd	}nd
t
| jf }ddt|  }t dkrTd| }||||f S )Nz
rec.array(zrec.array(%s,%sdtype=%s)zarray(z)array(%s,%sdtype=%s).view(numpy.recarray)r   r;   z, rK   )	separatorprefixsuffixz[], shape=%sr    rb   )rD   rR   r   r   rm   rn   rC   sizer   Zarray2stringrW   rH   r
   )r0   Z
repr_dtyper   r   lstlfr"   r"   r&   re     s"   

zrecarray.__repr__c                 C   s|   t |trt| dj}|| }t| dj}|| d d }|d u r5| j| }|jjd ur0|S |tS | j	|g|R  S )NrD   r   )
rB   intr   ro   r2   r?   rk   rD   rr   rj   )r0   rs   rz   r2   rt   ru   rv   r"   r"   r&   field.  s   


zrecarray.field)
NNr   NNNNNFr   r,   )r]   r^   r_   r`   r   r   ro   ry   r{   re   r   r   r"   r"   rg   r&   r   4  s    j
"!!r   c                 C   s    | dkrt jdtdd d S | S )Nr   zPassing `shape=0` to have the shape be inferred is deprecated, and in future will be equivalent to `shape=(0,)`. To infer the shape and suppress this warning, pass `shape=None` instead.   
stacklevel)warningswarnFutureWarning)r   r"   r"   r&   _deprecate_shape_0_as_None@  s   r   z	numpy.recFc                 C   s0  dd | D } t |}|du r| d j}nt|tr|f}|du r,|du r,dd | D }|dur6t|}n	t|||||j}|j}	t|t| krNt	d|d j}
t|
}|dkrb|d|  }t
||}t| D ]*\}}|| j}|jd|j|  }|	| }||krt	d| d| d	|||< qk|S )
a  Create a record array from a (flat) list of arrays

    Parameters
    ----------
    arrayList : list or tuple
        List of array-like objects (such as lists, tuples,
        and ndarrays).
    dtype : data-type, optional
        valid dtype for all arrays
    shape : int or tuple of ints, optional
        Shape of the resulting array. If not provided, inferred from
        ``arrayList[0]``.
    formats, names, titles, aligned, byteorder :
        If `dtype` is ``None``, these arguments are passed to
        `numpy.format_parser` to construct a dtype. See that function for
        detailed documentation.

    Returns
    -------
    np.recarray
        Record array consisting of given arrayList columns.

    Examples
    --------
    >>> x1=np.array([1,2,3,4])
    >>> x2=np.array(['a','dd','xyz','12'])
    >>> x3=np.array([1.1,2,3,4])
    >>> r = np.core.records.fromarrays([x1,x2,x3],names='a,b,c')
    >>> print(r[1])
    (2, 'dd', 2.0) # may vary
    >>> x1[1]=34
    >>> r.a
    array([1, 2, 3, 4])

    >>> x1 = np.array([1, 2, 3, 4])
    >>> x2 = np.array(['a', 'dd', 'xyz', '12'])
    >>> x3 = np.array([1.1, 2, 3,4])
    >>> r = np.core.records.fromarrays(
    ...     [x1, x2, x3],
    ...     dtype=np.dtype([('a', np.int32), ('b', 'S3'), ('c', np.float32)]))
    >>> r
    rec.array([(1, b'a', 1.1), (2, b'dd', 2. ), (3, b'xyz', 3. ),
               (4, b'12', 4. )],
              dtype=[('a', '<i4'), ('b', 'S3'), ('c', '<f4')])
    c                 S   s   g | ]}t |qS r"   )rC   Zasarray)r#   xr"   r"   r&   r'   }  s    zfromarrays.<locals>.<listcomp>Nr   c                 S   s   g | ]}|j qS r"   r   )r#   rv   r"   r"   r&   r'     s    z>mismatch between the number of fields and the number of arrayszarray-shape mismatch in array z ("z"))r   r   rB   r   rC   rD   r   r2   rH   rA   r   rE   ndim)Z	arrayListrD   r   r1   r2   r3   r4   r5   r   rX   Zd0nn_arraykrv   Z	testshaper~   r"   r"   r&   r   L  s6   1




r   c              	      sD  |du r(|du r(t j| td  fddt jd D }t|||||||dS |dur4t t|f}	n	t|||||j}	z	t j| |	d}
W nH t	t
fy   t|}|du r[t| }t|trc|f}t|dkrmt
dt||	}t|jD ]
}t| | ||< qwtjd	td
d | Y S w |dur|
j|kr||
_|
t}|S )a  Create a recarray from a list of records in text form.

    Parameters
    ----------
    recList : sequence
        data in the same field may be heterogeneous - they will be promoted
        to the highest data type.
    dtype : data-type, optional
        valid dtype for all arrays
    shape : int or tuple of ints, optional
        shape of each array.
    formats, names, titles, aligned, byteorder :
        If `dtype` is ``None``, these arguments are passed to
        `numpy.format_parser` to construct a dtype. See that function for
        detailed documentation.

        If both `formats` and `dtype` are None, then this will auto-detect
        formats. Use list of tuples rather than list of lists for faster
        processing.

    Returns
    -------
    np.recarray
        record array consisting of given recList rows.

    Examples
    --------
    >>> r=np.core.records.fromrecords([(456,'dbe',1.2),(2,'de',1.3)],
    ... names='col1,col2,col3')
    >>> print(r[0])
    (456, 'dbe', 1.2)
    >>> r.col1
    array([456,   2])
    >>> r.col2
    array(['dbe', 'de'], dtype='<U3')
    >>> import pickle
    >>> pickle.loads(pickle.dumps(r))
    rec.array([(456, 'dbe', 1.2), (  2, 'de', 1.3)],
              dtype=[('col1', '<i8'), ('col2', '<U3'), ('col3', '<f8')])
    Nr   c                    s"   g | ]}t  d |f  qS ).)rC   r   tolistrQ   rv   r"   r&   r'     s   " zfromrecords.<locals>.<listcomp>)r1   r   r2   r3   r4   r5   r   zCan only deal with 1-d array.zxfromrecords expected a list of tuples, may have received a list of lists instead. In the future that will raise an errorr   r   )rC   r   r   rY   r   r   rD   r   r   r   rA   r   rH   rB   r   r   r   rS   r   r   r   rr   )ZrecListrD   r   r1   r2   r3   r4   r5   Zarrlistr   retvalr   r   ru   r"   r   r&   r     s@   ,



r   c	                 C   sx   |du r|du rt d|durt|}	n	t|||||j}	|	j}
t|}|dv r2t| | |
 }t||	| |d}|S )a  Create a record array from binary data

    Note that despite the name of this function it does not accept `str`
    instances.

    Parameters
    ----------
    datastring : bytes-like
        Buffer of binary data
    dtype : data-type, optional
        Valid dtype for all arrays
    shape : int or tuple of ints, optional
        Shape of each array.
    offset : int, optional
        Position in the buffer to start reading from.
    formats, names, titles, aligned, byteorder :
        If `dtype` is ``None``, these arguments are passed to
        `numpy.format_parser` to construct a dtype. See that function for
        detailed documentation.


    Returns
    -------
    np.recarray
        Record array view into the data in datastring. This will be readonly
        if `datastring` is readonly.

    See Also
    --------
    numpy.frombuffer

    Examples
    --------
    >>> a = b'\x01\x02\x03abc'
    >>> np.core.records.fromstring(a, dtype='u1,u1,u1,S3')
    rec.array([(1, 2, 3, b'abc')],
            dtype=[('f0', 'u1'), ('f1', 'u1'), ('f2', 'u1'), ('f3', 'S3')])

    >>> grades_dtype = [('Name', (np.str_, 10)), ('Marks', np.float64),
    ...                 ('GradeLevel', np.int32)]
    >>> grades_array = np.array([('Sam', 33.3, 3), ('Mike', 44.4, 5),
    ...                         ('Aadi', 66.6, 6)], dtype=grades_dtype)
    >>> np.core.records.fromstring(grades_array.tobytes(), dtype=grades_dtype)
    rec.array([('Sam', 33.3, 3), ('Mike', 44.4, 5), ('Aadi', 66.6, 6)],
            dtype=[('Name', '<U10'), ('Marks', '<f8'), ('GradeLevel', '<i4')])

    >>> s = '\x01\x02\x03abc'
    >>> np.core.records.fromstring(s, dtype='u1,u1,u1,S3')
    Traceback (most recent call last)
       ...
    TypeError: a bytes-like object is required, not 'str'
    Nz2fromstring() needs a 'dtype' or 'formats' argument)Nr   )r   r   )r   rC   rD   r   itemsizer   rH   r   )Z
datastringrD   r   r   r1   r2   r3   r4   r5   r   r   r   r"   r"   r&   r      s   8r   c              
   C   s>   |   }z| dd |   | W | |d S | |d w )Nr   r   )tellseek)fdposr"   r"   r&   get_remaining_sizeK  s
   r   c	                 C   sl  |du r|du rt dt|}|du rd}nt|tr|f}t| dr)t| }	ntt| d}	|	z} |dkr=| |d t	| }
|durKt
|}n	t|||||j}|j}t
|jtjd}|| }|dk rt|}|
|  ||d	< t|}t
|jtjd}|| }||
krtd
t||}| |j}||krtdW d   |S 1 sw   Y  |S )a  Create an array from binary file data

    Parameters
    ----------
    fd : str or file type
        If file is a string or a path-like object then that file is opened,
        else it is assumed to be a file object. The file object must
        support random access (i.e. it must have tell and seek methods).
    dtype : data-type, optional
        valid dtype for all arrays
    shape : int or tuple of ints, optional
        shape of each array.
    offset : int, optional
        Position in the file to start reading from.
    formats, names, titles, aligned, byteorder :
        If `dtype` is ``None``, these arguments are passed to
        `numpy.format_parser` to construct a dtype. See that function for
        detailed documentation

    Returns
    -------
    np.recarray
        record array consisting of data enclosed in file.

    Examples
    --------
    >>> from tempfile import TemporaryFile
    >>> a = np.empty(10,dtype='f8,i4,a5')
    >>> a[5] = (0.5,10,'abcde')
    >>>
    >>> fd=TemporaryFile()
    >>> a = a.newbyteorder('<')
    >>> a.tofile(fd)
    >>>
    >>> _ = fd.seek(0)
    >>> r=np.core.records.fromfile(fd, formats='f8,i4,a5', shape=10,
    ... byteorder='<')
    >>> print(r[5])
    (0.5, 10, 'abcde')
    >>> r.shape
    (10,)
    Nz0fromfile() needs a 'dtype' or 'formats' argument)r   readintorbr   r   r   r   z:Not enough bytes left in file for specified shape and typez%Didn't read as many bytes as expected)r   r   rB   r   hasattrr   openr	   r   r   rC   rD   r   r   r   prodrm   Zintpr)   indexrS   rA   r   r   dataOSError)r   rD   r   r   r1   r2   r3   r4   r5   ctxr   r   r   Z	shapeprodZ	shapesizenbytesr   Z
nbytesreadr"   r"   r&   r   T  sN   .




  r   Tc                 C   s  t | tdtfst| dr|du r|du rtdi }|dur&t|}n|dur4t|||||	j}n|||||	d}| du rQ|du rHtdt||| ||dS t | t	rbt
| |f||d|S t | ttfrt | d ttfr}t| f||d	|S t| f||d	|S t | tr|dur| j|kr| |}n| }|
r| }|S t| drt| |||d
S t | tr|dur| j|kr| |}n| }|
r| }|tS t| dd}|du st |tstdt| } |dur| j|kr| |} | tS )a
  
    Construct a record array from a wide-variety of objects.

    A general-purpose record array constructor that dispatches to the
    appropriate `recarray` creation function based on the inputs (see Notes).

    Parameters
    ----------
    obj : any
        Input object. See Notes for details on how various input types are
        treated.
    dtype : data-type, optional
        Valid dtype for array.
    shape : int or tuple of ints, optional
        Shape of each array.
    offset : int, optional
        Position in the file or buffer to start reading from.
    strides : tuple of ints, optional
        Buffer (`buf`) is interpreted according to these strides (strides
        define how many bytes each array element, row, column, etc.
        occupy in memory).
    formats, names, titles, aligned, byteorder :
        If `dtype` is ``None``, these arguments are passed to
        `numpy.format_parser` to construct a dtype. See that function for
        detailed documentation.
    copy : bool, optional
        Whether to copy the input object (True), or to use a reference instead.
        This option only applies when the input is an ndarray or recarray.
        Defaults to True.

    Returns
    -------
    np.recarray
        Record array created from the specified object.

    Notes
    -----
    If `obj` is ``None``, then call the `~numpy.recarray` constructor. If
    `obj` is a string, then call the `fromstring` constructor. If `obj` is a
    list or a tuple, then if the first object is an `~numpy.ndarray`, call
    `fromarrays`, otherwise call `fromrecords`. If `obj` is a
    `~numpy.recarray`, then make a copy of the data in the recarray
    (if ``copy=True``) and use the new formats, names, and titles. If `obj`
    is a file, then call `fromfile`. Finally, if obj is an `ndarray`, then
    return ``obj.view(recarray)``, making a copy of the data if ``copy=True``.

    Examples
    --------
    >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])

    >>> np.core.records.array(a)
    rec.array([[1, 2, 3],
               [4, 5, 6],
               [7, 8, 9]],
        dtype=int32)

    >>> b = [(1, 1), (2, 4), (3, 9)]
    >>> c = np.core.records.array(b, formats = ['i2', 'f2'], names = ('x', 'y'))
    >>> c
    rec.array([(1, 1.0), (2, 4.0), (3, 9.0)],
              dtype=[('x', '<i2'), ('y', '<f2')])

    >>> c.x
    rec.array([1, 2, 3], dtype=int16)

    >>> c.y
    rec.array([ 1.0,  4.0,  9.0], dtype=float16)

    >>> r = np.rec.array(['abc','def'], names=['col1','col2'])
    >>> print(r.col1)
    abc

    >>> r.col1
    array('abc', dtype='<U3')

    >>> r.col2
    array('def', dtype='<U3')
    Nr   zIMust define formats (or dtype) if object is None, string, or an open file)r1   r2   r3   r4   r5   z"Must define a shape if obj is None)r   r   r   )r   r   r   )rD   r   )rD   r   r   Z__array_interface__zUnknown input type)rB   rR   rT   r   rA   rC   rD   r   r   bytesr   r)   rS   r   r   rr   copyr   r   rx   dictr   )rv   rD   r   r   r   r1   r2   r3   r4   r5   r   kwdsnewZ	interfacer"   r"   r&   r     sf   U







r   )NNNNNFN)NNr   NNNFN)
NNr   NNNNFNT)"r`   r   collectionsr   
contextlibr   _utilsr    r   rC   r   rm   Znumpy.compatr	   Z
arrayprintr
   __all__r   r\   Z
sctypeDictZnumfmtr*   r   rn   r   r   r   r   r   r   r   r   r   r"   r"   r"   r&   <module>   sr    #	 U  ^TJ	d